DATA MODELING FOR MACHINE LEARNING AND DATA-CENTRIC ANALYTICS FOR SMART AEROSPACE ADDITIVE MANUFACTURING

Project Lead: Honeywell

Partners: MORF3D, University of California Los Angeles, University of Southern California, Missouri University Science &Technology, Identify 3D, Sentient Science Corp, Stratonics

hon.png
usc.jpg
strats.png
mst.jpg
morf.png
Identify3D-logo.png
ucla.jpg
sen.jpg

Problem Statement:  Challenges in contextualization of the enormous amounts of data in a meaningful timeframe in data modeling including gathering of right data; real-time data collection scalability; application of right machine learning tools; interoperability; interactions between edge and cloud; connectivity of smart factory to office; office/factory to cloud; cloud services which connect back with the office; factory and the worker/process engineer.

Project Goal: The goal of this project is to develop technologies on data modeling, machine learning and data-centric analytics for smart Aerospace additive manufacturing and to implement these innovations using data from working Aerospace manufacturing facilities.

Picture1.jpg

Technical Approach:

  • Accelerate the implementation of critical data modeling for machine learning and data-centric analytics into Smart Manufacturing (SM) technologies for aerospace. The project will implement these innovations using data from working Aerospace manufacturing facilities.

Key Tasks/Milestones:

  • Identify and collect available data sources within smart manufacturing (M7)

  • Accurately capture and predict defects through data modeling originating from the process of the manufacturing plant (M17)

  • Develop, refine, and integrate data analytics and machine learning into SM DMLS system (M18)

  • Set up the edge-cloud interoperability and establish a workflow to demonstrate the ML toolkit (M18)

  • Demonstration OF D2ML technologies using two working Aerospace manufacturing sites (M18)

  • Financial tracking, reporting, and project cost performance (M18)

Potential Impact:

  •  Improve AM process development monitoring and build efficiencies reducing the need for multiple development iterations to establish acceptable build parameters

  • Energy usage will be reduced as development cycles are eliminated

  • Additive Manufacturing (AM) as an affordable alternative to more traditional, energy-intensive part manufacturing processes, reducing overall US manufacturing energy consumption

  • This program will enable the large data sets currently being created by AM equipment to be utilized to develop actionable insights and make affordable AM part build processes

Benefit to CESMII:

  • D2ML addresses secure, scalable, and interoperable on premise, edge, and off-premise cloud-technology integration

    Application across aerospace industry

    Help new AM startups accelerate their AM product expansion through SM technologies

 

Project Cost Share and Duration:

Project Duration: 18 months, CESMII Cost Share: 64%, Member Cost Share: 36%

 
 
msg.png